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An increase in the upstream sediment discharge rate in an otherwise uniform alluvial
flow often leads to the formation of a stable, propagating sediment bore. In this
paper we study discontinuous simple wave solutions of the integral conservation laws
governing flows in alluvial rivers or channels. We obtain a family of solutions,
parametrized by the upstream sediment discharge rate, ¢;, and the downstream
Froude number, F,, which represent stable sediment bores. It is shown that the
solutions exist only in a restricted region of the (F, ¢;) plane, and within this region,
their properties are derived. A sediment bore is generated experimentally in a flume
and measurements are made. The agreement between the measurements and the
predictions of the theory is encouraging.
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26 D. J. Needham and R. D. Hey

1. Introduction

A long-term increase in the bed-load sediment transport upstream of an otherwise
uniform alluvial river flow will generally result in the formation of a large, localized
step in the bedform with a planar avalanche face spanning the width of the river.
This step separates the upstream flow at the higher transport rate from the
downstream flow at the original, lower transport rate and propagates downstream at
a speed much slower than that of the mean fluid velocity in the flow. This type of
bedform is often referred to in the geophysical literature as a planar delta-form or a
sediment bore and has been described by, among others, Jopling (1963, 1965, 1977)
and Collinson & Thompson (1982). The term ‘sediment bore’ will be adopted in this
paper.

A typical situation in the environment that leads to higher upstream than
downstream bed-load sediment transport rates, and hence the formation and
propagation of a sediment bore, occurs in rivers that experience a dramatic and
sustained increase in sediment supply as, for example, where landslides suddenly
inject large volumes of sediment into a river valley and this is subsequently eroded
by the flow. It also occurs where nature- or man-induced disasters cause massive
sediment injection to a river as, for example, a result of volcanic activity or dam
bursts (see, for example, the report by Pitlick & Thorne (1987) on the Fall River in
Colorado).

Further situations arising in the environment that lead to higher upstream than
downstream bed-load sediment transport rates, and hence the formation and
propagation of sediment bores are (a) river flow into a dredged section, (b) river flow
entering a reservoir, (¢) river flow entering an estuary.

In each of the situations (a)—(c), the flow from upstream experiences a rapid
increase in depth either as it enters the dredged section or as it approaches the
beginning of the reservoir or estuary basin, where the bed level is much lower than
that upstream or the flow depth is increased due to back water effects. Consequently,
the flow velocity downstream is much slower than that upstream, leading to a similar
reduction in the downstream sediment transport rate. This situation is then as
described above with a higher upstream than downstream rate of sediment
transport, which invariably leads to the formation of a downstream propagating
sediment bore. Observations show that the sediment bore advances via the bed load
at the higher upstream transport rate ‘avalanching’ over the step and accumulating
due to the lower downstream transport rate. In examples (a) and (b) the slowly
advancing front usually has a planar structure whilst in example (¢) the front
gradually expands into the widening estuary and eventually develops curvature.
With the upstream transport rate maintained, the consequences of planar sediment
bore propagation in examples (a) and (b) are undesirable; in both cases, the dredged
section or the reservoir will eventually be filled with sediment up to the original
upstream bed level, following the passage of the sediment bore. Thus an
understanding of the mechanism of sediment bore propagation is a basic management
requirement in these examples. In particular, it is important to have an estimate of
the propagation speed of the sediment bore to obtain timescales over which a
reservoir or dredged river section will be refilled by the advancing wave front.

Particular cases of sediment bores propagating in rivers have been reported by
Hasholt (1972, 1974, 1977, 1984) in detailed field surveys on three watercourses in
Denmark. These studies provide a qualitative description of the propagation of a
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Nonlinear theory for sediment bores 27

_— T

Dredged Section

Lower bed load transport

Figure 1. An illustration of an advancing sediment bore into a dredged section of a river.

sediment bore into a dredged section of river, together with the effects of re-dredging
and the re-formation of the sediment bore. A further interesting description of the
propagation of sediment bores into reservoirs and lakes is given by McManus (1985).
This paper reports the rate of advance of a delta-form wave front into Lake Mead on
the Colorado River as approximately 300 m a™!, the advance of the Terek delta (on
the Caspian) as approximately 300 m a™!, whilst the advance of the delta form in the
Lillooet River (British Columbia) is estimated at approximately 10 m a~'. All of
these delta forms have wave fronts with the characteristics of sediment bores.
Unfortunately, further measurements are not reported. However, it is noted that the
rate of progression of the wave front is dependent on the upstream water and
sediment discharge rates, together with the downstream depth. To illustrate the
typical situation arising in the above examples, a sketch of a sediment bore
propagating into a dredged river section is shown in figure 1.

A sediment bore is readily reproduced in a laboratory flume by first maintaining
a uniform alluvial flow at prescribed fluid and sediment discharge rates, after which
a rapid order of magnitude increase is made in the upstream sediment discharge. The
formation of a sediment bore quickly follows this increase and propagates slowly
down the flume. We have been able to produce sediment bores in the flume at the
University of East Anglia. A simple experiment was done by first introducing a
uniform sediment (2 mm grit) input at the head of the flume and allowing the system
to attain equilibrium. The sediment bore was then initiated by more than doubling
the upstream rate of sediment input. A short period after the increase, a coherent
sediment bore was observed to develop and propagate slowly downstream. The
photograph in figure 14« shows the profile of the sediment bore at a time of 30 min
after the initial increase in the sediment transport rate. Further details of this
experiment are given in §13.

In this paper we develop a nonlinear theory to describe the propagation of a
sediment bore down a straight section of an otherwise uniform alluvial river. The
theory is based on the depth-averaged integral conservation laws of shallow water
theory augmented by a flow resistance term, together with an integral conservation
law expressing continuity of bed-load sediment, and a sediment transport function
that relates the rate of bed-load sediment transport to the local mean fluid velocity.

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

,\
A
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

28 D. J. Needham and R. D. Hey

The shallow water (or long wave) theory describes the evolution of features with a
streamwise length scale much longer than the mean depth of the flow. Thus, within
this framework, the sediment bore appears as a discontinuous step in the bedform
separating the upstream alluvial flow with the higher bed-load transport rate from
the downstream alluvial flow with the lower bed-load transport rate. The
characteristics of the flow to the rear of the bedform step (that is, the flow velocity
and depth, and the bed level, together with the speed of propagation of the step in
bedform) are determined in terms of the flow conditions downstream and the
increased upstream sediment transport rate. These large-scale features of the
propagating sediment bore are thus determined by the overall conditions upstream
and downstream of the wave front (that is, on upstream and downstream conditions
over streamwise length scales much longer than the mean flow depth). This is exactly
the situation obtained in classical fixed-bed shallow water theory where the
turbulent free-surface bore is modelled as a discontinuity separating two uniform
flows at differing fluid discharge rates. The detailed structure of the free-surface bore,
in general a highly turbulent two-dimensional flow, does not affect, at leading order,
its propagation speed or the overall conditions at distances ahead and behind the
wave front. Similarly, in the present theory the detailed structure of the sediment
bore wave front does not affect the overall properties considered in the paper. This
structure usually consists of a locally turbulent two-dimensional flow, which is often
locally two-phase, due to the turbulence lifting bed-load sediment into suspended
load. As in the theory of fixed-bed turbulent bores, where the turbulence remains
confined to the wave front and can be neglected in shallow-water theory, so the
turbulence and suspended load local to the bed step can be neglected in the present
theory, provided we are considering the flow over a streamwise length scale that is
sufficiently long relative to the mean flow depth for the effects of turbulence and the
quantity of suspended load sediment produced at the bed step to become negligible.
This, in effect, provides a definition for the streamwise length scale in the present
shallow water theory. The details of the local flow, such as turbulence, suspended
load and sediment sorting, which the present theory does not aim to describe, are
discussed in some detail by Jopling (1963, 1965, 1977). It is these features which
account for the overall energy dissipation at the wave front of the sediment bore (as
discussed in §4).

The general shallow water theory developed in this paper reveals that there are
three types of simple step waves which can propagate in an alluvial river. All require
an increase in the upstream sediment discharge rate. One propagates downstream
with a speed comparable to that of the depth-averaged fluid velocity, but carries
with it only a small step in bedform relative to the flow depth. The remaining two
waves can carry larger steps in bedform. One of these waves propagates upstream,
whilst the other propagates downstream. The speeds and bedform step heights vary
within differing regions of the (£, ¢;) plane, where ¢, is the upstream sediment
discharge rate and F is the downstream Froude number. In appropriately defined
regions of the (f, ;) plane, with ¢;, > 1, both of the latter two simple waves exhibit
the characteristics of a sediment bore. A strict requirement for the downstream
propagation of a sediment bore is found to be #, < 1, that is the downstream uniform
flow must be subcritical, which is borne out by our observations in the flume at the
University of East Anglia.

Phil. Trans. R. Soc. Lond. A (1991)
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Nonlinear theory for sediment bores 29

2. The conservation laws

The depth-averaged hydraulic equations governing the one-dimensional flow in an
alluvial river or channel are derived by considering conservation of fluid and
sediment mass and fluid momentum in a section of the flow from « =z, to « = =,
(xy > @;). These three equations are then closed by the introduction of a bed-load
sediment transport function. The equations, in integral conservation form, are:

d ‘ Ly —
az “hdat [hv]3: (1)
- f £ du—[q]5; = 0, @)
d [z ] Ty
T j o da 4 [v*h -+ 3gh*] 3 +j gh dy = j R, h,q)hda, (3)
z, 051,2 Z,
= Q(h,v). (4)

Here x measures distance horizontally from a fixed point 0; ¢ is time; v is the
depth-averaged horizontal fluid velocity and ¢ is the transported bed-load sediment
volume discharge rate per unit width across a vertical section. The flow depth is £
and the bed level, measured vertically downwards from the z-axis, is § (the free
surface level measured upwards from the x-axis is then y = A—§). The situation is
illustrated in figure 2. In (3) the function B(v, &, ¢) is the flow resistance force per unit
mass whilst in (4) G(v, &) is the bed-load sediment transport function. The last term
on the left-hand side of (3) is a line integral with respect to y (the coordinate
measuring distance vertically upwards) along the path € , which denotes the
section of the bedform curve from x = x, to « = a,. This term arises from the force
in the a-direction on the fluid between x =, and « = «, due to the normal reaction
from hydrostatic pressure at the river bed. A derivation of equations (1)—(3) is given
by Stoker (1957) while Cunge et af. (1981) discuss the effects of sediment transport
associated with equation (4).

To proceed further, particular functional forms for £ and ¢ must be specified. For
R we use the Chézy law (see, for example, Gibson 1934), which for a wide channel of
rectangular section may be written as,

R =—%,(q) v*/h. (5)

This allows for the dimensionless Chezy coefﬁment %, to depend on the local rate
of bed-load sediment transport q, through

C/(1+%q), (6)

where %; is the usual Chézy (oefﬁuent for the flow in the absence of bed-load
sedlment transport and % is a material constant measuring the magnitude of the
influence of sediment trdnsp()rt on flow resistance. This simple form for €, allows for
a reduction in flow resistance with increasing bed-load sediment transport provided
the bed remains plane. Although we have proposed a detailed form for the flow
resistance, R, in (6), we shall see that the equations derived from (1)—(4) which relate
conditions immediately upstream and downstream of a discontinuous wavefront do
not, in fact, involve R. This is to be expected, since B appears in equation (3) as a
body force.

Phil. Trans. R. Soc. Lond. A (1991)
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30 D. J. Needham and R. D. Hey

Figure 2. A sketch of the coordinate system.

For ¢ we follow Cunge et al. (1981), and use the simple form,
G = mo", (7)

where m will, in general, depend upon the flow characteristics and » is constant. In
many practical situations it has been demonstrated, at least for slowly varying
alluvial flows, that 1 <n < 2. However, larger values of » may be attained when the
bed is dune covered, Engelund & Hansen (1967). Many of the available sediment
transport functions are reasonably well approximated by taking m as constant in (7).
For simplicity we adopt this approximation in the present paper, and also take
n = 2. It is expected that these approximations will be at least qualitatively, if not
always quantitatively, accurate over a reasonably wide range of flow situations.
Moreover, it is readily observed in performing the analysis that the qualitative
nature of the results obtained in this paper are unchanged with differing functional
forms for ¢, provided it remains as a positive, monotone increasing function of
v(> 0).

Observations of sediment bores in both natural water courses and in flumes (see
figure 14a) indicate that the horizontal length scale over which the step in bedform
takes place is comparable with the overall flow depth. This suggests that in terms of
the shallow water theory description of alluvial river flows (as represented by
equations (1)—(4)) the local structure of the sediment bore will be unresolved, and the
bore wave front will appear as a simple step discontinuity in the bedform. Therefore,
if the shallow water theory is to be adequate for describing sediment bore
propagation, we will require equations (1)—(4) to admit solutions which contain
simple step discontinuities in h, v, ¢ and &, as illustrated in figure 3, where the
discontinuity is positioned at x = s(f), with conditions immediately upstream and
downstream of the discontinuity referred to by subscripts L and R respectively.
Equations (1), (2) and (4) certainly allow solutions that have simple step
discontinuities in A, », ¢ and § However, equation (3) requires more careful
consideration. Although the first two terms on the left-hand side together with the
last term on the right-hand side of equation (3) admit simple step discontinuities in
h, v, and ¢, it remains to examine the last term on the left-hand side, namely,

J gh dy. (8)
c

3%

Phil. Trans. R. Soc. Lond. A (1991)
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X=X1 x=5(t) X=Xy

(ii)

|
|
|
|
|
|
|
|
|
|
|I
|

Figure 3. A simple jump discontinuity located at x = s(t) illustrating the notation of §3. Upstream
of the discontinuity (i), conditions A, §,, V,; downstream of the discontinuity (ii), conditions Ay,
Vi, €x- The path of the line integral (iii), is €y .

With w;, %, either side of the discontinuity, the path, C; . of the line integral (8)
remains well defined, as illustrated in figure 3. However, the line integral (8) cannot
be evaluated along that section of the path C’g which constitutes the face of the step
in bedform. This is because the function % in the integrand of (8) is, in general, not
well defined along the face. At any point on the face, # measures the vertical distance
between this point and the free surface of the water. However, since the free surface
of the water will, in general, be simultaneously discontinuous, - cannot be resolved
along the face of the step in bedform. We must conclude that equations (1)—(4)
cannot admit solutions with simple step discontinuities in 4, v, ¢ and §. To allow the
possibility of discontinuous solutions, the model of the flow provided by equations
(1)-(4) must be extended to include a definition of 4 (as a function of ) along the face
of a step in bedform; that is, we must include information concerning the structure
of the sediment bore over a horizontal length scale comparable with the flow depth.
To this end we augment the flow description provided by equations (1)—(4) with the
condition that along the face of a step discontinuity in bedform,

h = d/(?/)v min {ﬁgLﬂ _gR} < Y < max {_gl,’_gR}’ (9)

where d’(+) is a positive differentiable function in its interval of definition and
satisfies the end conditions,

_gL) = hr,a d/(_gR) = hR' (10)

In addition it is reasonable to require that d’(y) is a monotone function of y. The
inclusion of a specific form for d’(y) is somewhat arbitrary, up to the conditions
specified above. However, since d’(y) models the depth—bedform relation across the
thin wave front, we expect that the overall conclusions from the theory (qualitatively
at least) will not be strongly sensitive to changes in the details of d’(y).

An alternative approach would be to extend the present model by including
higher order effects in equations (3) and (4); for example, the inclusion of the term
[— (v, h) dv/dx]32 on the left-hand side of (3) (representing a longitudinal stress in the
fluid, with v an appropriately defined Eddy viscosity), together with a higher-order
description of the momentum balance in bed-load sediment transport in (4). The

Phil. Trans. R. Soc. Lond. A (1991)
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32 D. J. Needham and R. D. Hey

inclusion of such terms would resolve the structure of discontinuities and provide a
function d’(y) (as the variation in depth with bedform elevation throughout the
structure) to augment the lower-order theory ; equations (1)—~(4). However, it is not
clear at present how the model provided by equations (1)-(4) could be rationally
extended to higher order, without making those equations considerably more
complex. We therefore adopt the former approach of augmenting equations (1)—(4)
with condition (9). The proposal of a specific form for d’(y) is considered at a later
stage.

With a constant fluid discharge ¢, and sediment discharge ¢, the most simple
solution of equations (1)—(7) is that representing a uniform flow down an incline of
slope S, where h = h,, v =1v, are constants and &= Sz. After substitution into
equations (1)—(7) we obtain the following expressions,

9 % Q(z) ’m’:l% (gt' I:QOT
vo =1 k() = 5 S = 1, 1 1
[m] [ 9o 9Qo(1+% q) Lm (n

which determine the flow speed, depth and slope for the uniform flow in terms of ¢,
¢, and the material parameters ;, €, and m.

Henceforth we consider the propagation of simple waves into the uniform flow,
generated by a change in the upstream sediment discharge. Thus typical scales for
the fluid velocity, depth and sediment discharge are v, h, and g, respectively. In
general, there will also be a characteristic timescale, say ¢, associated with the flow,
which leads to a characteristic length scale given by [, = v, ¢,. We use these scales to
introduce the following dimensionless variables:

U:?JO ?J/, hzh() h/’ gzho g/’ QZQO q/’ y=h0 y/’ x:l() x/’ tzt() t/' (12)

After dispensing with primes for convenience, equations (1)-(7) become, in
dimensionless form:

d [*
G| e+l =0, (13a)

d [*
Etf £ dx—e[v?]2 = 0, (13b)

Zy

d (= TR Lo g2

= ho da+| v2h 52 1 __1 v 3¢
dtLl v dx [v +2F(2) L+F<2> C.E(hdy UL, A+ 00 de, (13¢)
q="" (13d)

where ¢ has been replaced from (4), via (7) in (3), and R has been replaced from (5)
into (3). Equation (13a—c) now serve to determine h, v and £, after which ¢ is
obtained from (13d). Four dimensionless parameters have been introduced in
(13a—<). Fy=v,/4/(gh,) is the Froude number of the uniform flow, whilst ¢ =
4,/ @, measures the overall ratio of sediment to fluid discharge in the flow and o =
hy/t, v, €, gives a dimensionless measure of the inverse timescale associated with the
flow. Also, 0 = %, q, provides a dimensionless measure of the effect of bed-load
sediment transport on flow resistance. It should be noted that in the limit ¢, 6 >0,
equation (13a—c) reduce to those of fixed-bed hydraulics, while allowing 6> 0 alone
decouples flow resistance from the effects of sediment transport.

Phil. Trans. R. Soc. Lond. A (1991)
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Nonlinear theory for sediment bores 33
In terms of the dimensionless variables the uniform flow becomes,
v=1, h=1, £=F/oc(1+0)x, ¢=1. (14)

We now consider the conditions which must be satisfied across a simple step
discontinuity which may occur in the solutions of equation (13a—c), when augmented
with condition (9) (in a suitable dimensionless form).

3. Conditions at a step discontinuity

As discussed in §2, the integral conservation laws (13a—c), when augmented with
condition (9), may admit solutions that contain simple step discontinuities in A, » and
£. Here we obtain the appropriate forms for the jumps in A, » and § across such a
discontinuity.

We suppose that a solution of (13a—c) has a simple step discontinuity at position
x = s(t) across which condition (9) holds, with £, v, £ continuous and differentiable on
cither side of the discontinuity. The fixed stations x; and x, are chosen so that
x; < s(t) < x,, and we denote variables upstream (x—s(f) < 0) and downstream
(x—s(t) > 0) by the subscripts L and R respectively. The situation is illustrated in
figure 3. The notation [ |} denotes the downstream to upstream difference across the
discontinuity.

To derive the jump conditions, we split the range of integration in (13a—c) by

writing
J‘xz js(t) J‘x2
as + ,
2 Zy s(t)

after which the limit x,;, x,—>s(f) is taken. The jump conditions corresponding to
equation (13a,b) are readily obtained as

[h(v—$)} =0, (15a)
[ev?+ &5 =0, (15b)

whilst the jump condition associated with equation (13¢) requires,
[fws —v2h—h*/2F2— (1 /F2) d(— &)} = 0, (15¢)

after using (9) to evaluate the line integral along the face of the step in bedform.

The conditions (15a—c) must be satisfied across any discontinuity that develops in
a solution of equation (13a—c). It should be noted that in the limit ¢ >0 with [£]} =
0, conditions (15a—c) reduce to the usual jump conditions required at a discontinuity
in fixed-bed hydraulics. In addition, it is important to note that the jump condition
(15¢) is uninfluenced by the body force term on the right side of equation (13¢). In
particular, this means that the jump conditions are independent of the nature of the
flow resistance term and of the parameter o, which measures the ratio of the order
of magnitude of the inertia and pressure gradient terms to that of the body force
terms. In fact the only dimensionless parameters appearing in the jump conditions
are the Froude number ¥ and e.

We next consider the dissipation of kinetic and gravitational potential energy in
the flow due to the presence of a discontinuity.

Phil. Trans. R. Soc. Lond. A (1991)
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4. Energy dissipation at a discontinuity

We consider again the section of the flow between x = x; and x = «,, as illustrated
in figure 3. Within this section a consideration of the rate of dissipation of mechanical
energy in the flow leads to the expression

= N Ul (h— 8 = s (€= P = €T+ g (B (10
Here dD/dt is the rate of energy dissipation at the discontinuity, which has been
made dimensionless with ph, v,%. The only term in (16) which does not arise in fixed-
bed hydraulics is the final term which represents the rate of working of the normal
reaction at the bed step. On physical grounds, any discontinuity in a solution of
equation (13a—c) with condition (9) cannot create energy. Thus we require

dD/dt = 0 (17)
at a discontinuity.
5. Contact discontinuities

Before examining simple wave solutions in detail we first consider whether
discontinuities are possible, across which one or more of the variables remain
continuous. This type of discontinuity is often referred to as a contact discontinuity.

On using the conditions (15a—c) it is readily shown that the only possible contact
discontinuity has A and » continuous with ¢ =0, after which (15¢) reduces to
d(—§,) =d(—&g). However,

y=—£,
U-e)-i-g) = |y
y=—fgr
which cannot vanish (since d’(y) > 0) unless &; = £z, and all variables are then
continuous. Thus at a point of discontinuity, A, » and § are all required to be
discontinuous and contact discontinuities are not possible.

6. A functional form for d’(y)

To consider simple waves in detail we must first specify a functional form for d’(y).
We take the most simple form, in which d’(y) is a linear function of 5. On satisfying
conditions (10), we obtain

d'(y) = hy,—(Er+y) Er—Er) 7! (hy,—hg), min{—&, —&p} <y <max {—&,—&}
(18)
Although this choice is somewhat arbitrary, observations of the structure across a
sediment bore wave front (see, for example, figure 14a) show that the flow depth
changes almost linearly with the bedform elevation, which lends quantitative
support to our chosen form for d’(y) in (18).
The function d(y) is obtained directly from (18), via integration, as

dy) = hy, y—3y(2&,+y) (&, —Er) 7" (hy,—hg),
min {—gr,’—gR} SYS min {—grn_gR}' (19“)

The constant of integration is neglected since d appears only as a difference in
equations (15¢) and (16). On using (19a) we find, after some algebra, that

[d( “g)H{ = JE(‘gR-gI) (hg+hy). (190)
Phil. Trans. R. Soc. Lond. A (1991)
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x=5(t)

Figure 4. A sketch of the simple wave solution. At (i) § =&, h=h, =H, V="V;
at (i) E=0,h=1,V=1.

7. Simple wave solutions

In this section we examine a family of simple wave solutions of equations (13 a—c).
These solutions are generated by a change in upstream conditions in an otherwise
uniform alluvial flow. The change in conditions generates a discontinuity which then
propagates into the original downstream uniform flow. Since we are considering a
discontinuity propagating into the uniform flow (14), it is first convenient to write

E=Fa/o(14+0)—£ (20a)
and work with £ (which measures the upward displacement of the bedform from the
line y = —F2ax/0(1+0)) rather than £ Thus to the right of the discontinuity
(downstream) we have the uniform flow, so that, using (14) and (20a)

v=wvg=1, h=hy=1, E=£ =0. (200)

To the left (upstream) of the discontinuity a modified flow is generated by a
prescribed change in the sediment discharge rate. The simplest upstream flow which
may be obtained by a change in the upstream sediment discharge rate is the modified
uniform flow corresponding to the altered sediment discharge rate. It is this situation
that we pursue in the present paper. However, for non-uniform steady flow
conditions upstream of the discontinuity, the following theory remains valid, with
vy, H and £, (as obtained below), then providing downstream boundary conditions
for the non-uniform steady upstream flow.

Thus to the left of the discontinuity we consider a modified uniform flow at the
altered sediment discharge rate. In this situation the flow will be steady in a frame
of reference moving with the propagation speed of the discontinuity, and no natural
timescale is present in the flow. Therefore in what follows we may set, without loss
of generality, ¢, = h,/v, €, after which o = 1.

To proceed it is convenient, for the present, to think of the modified uniform
flow upstream of the discontinuity as being generated by a given depth change / =
hy, = H. With the discontinuity at x = s(t), the flow to the left (upstream) is then
given by, from equations (13a—c),

v=wv,, h=h,=H, £=

1 , (L+0)F2) i ‘
(1+0){F°_ (1+0v%)}(x s(t)+&r, (21)
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where F| = F, v, /H? is the upstream Froude number and the constants v, and £
are to be determined. A schematic representation of the simple wave is shown in
figure 4.

The jump conditions (15a—c) provide three equations to be solved for the three
unknowns v, £, and §(t) as functions of the two parameters F, and H. It is convenient
to write conditions (15a—c) in terms of a frame of reference relative to the moving
discontinuity. Thus we introduce

By, = v, —$(1), (22)

where 7}, is the fluid velocity on the left relative to the moving discontinuity. In terms
of 4;, conditions (15a—c) become, after use of (196)—(22),

Hb, = (1—8), (23a)
(4482 —E 8 =e, (230)
(1=8) [(1=8) =8, | =4F 2 (H*—1) = {F* (H+1) €. (23¢)
We first solve (23a, b) for ¢, and fL to obtain,
b= (1—8)/H, (24 a)
£ =e(l—5§)(1—H)[(14+H)—35(1—H)|/sH?, (24b)

The above expressions are now used to eliminate ¢, and &, from (23¢) which leads
to a single cubic equation to be solved for § as a function of the parameters ¢, H and
F,, namely,

1 { (1—H?)

&3
S +2F§ € 7

= 0.

—417'(2)}8'2+ !

: 2
By {2[4’(2)__(H+ 1) H~2€(H+1)}é+C(H+ 1)

H 2F2 H
(25)

As a check, we note that as H — 1 the three roots of equation (25) reduce to the three
linearized dynamic wave speeds for small disturbances to the uniform flow, as given
by Needham (1990). We now consider the solutions of equation (25) when ¢ € 1, a
condition which is satisfied in practice by the majority of alluvial river flows. We use
singular perturbation theory (see, for example, Nayfeh 1981) to develop the
asymptotics of the roots directly from equation (25). This approach is adopted as it
clearly unfolds the nature of the perturbation 0 < ¢ < 1 for mobile-bed hydraulics
from the case ¢ = 0 for fixed-bed hydraulics.

8. The theory for ¢ < 1

We consider the solution of equation (25) for ¢ € 1. An examination of (25) shows
that as e >0, two of the roots are of O(1), whilst the other is of O(¢). We consider first
the two roots which are of O(1) as ¢ 0.

8.1. The O(1) roots

With § of O(1) as e >0 equation (25) reduces to a quadratic equation at leading
order, with roots,
§=38, ~1+£+/(HH+1)/2F%) as e—>0, (26)

with “+ " and * —’ referring to the upper and lower root respectively. These are the
usual speeds obtained in fixed-bed hydraulics for the propagation of a hydraulic
jump of depth H into a uniform flow of Froude number F,.

Phil. Trans. R. Soc. Lond. A (1991)
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Nonlinear theory for sediment bores 37

We now consider the energy dissipated at a discontinuity with speed $,. With $ of
O(1), we see from (24b) that £ is of O(¢). Thus, at leading order, the rate of energy
dissipation becomes, via (16), (19b), (22) and (23 a—c),

dD/dt ~ (1—38) (1 —H)*/4F2 H; ¢—~0, §=0(1). (27)
§=4,

For the family of discontinuous solutions with § = $,, we have (1—4§,) <0 for all
H, F,>0. The requirement (17), that energy should be dissipated at the
discontinuity, then reduces to, via (27), H > 1. Thus, in the positive quadrant of the
(H, F,) plane, the family of discontinuous solutions with speed §, exist only in the
domain

D, . ={HF,):H>1F, >0} (28)

This family of solutions move downstream with a speed greater than unity,
carrying with them an increase in upstream flow depth.
§=8_

For this family of discontinuous solutions we have (1—3_) > 0 for /', H > 0, and
energy dissipation requires, via (27), that 0 < H < 1. Therefore, this family of
discontinuous solutions, with speed $_, exists only in the domain

D_={H,F,):0<H<I1,F, >0}, (29)
of the (H, F,) plane. An examination of (26) shows that

C(>0; GH,F,)<0, ‘
- { <0; GUH,F)>0, (30a)
h
where G(H,F,) = H(H+1)—2F2, (30b)

Thus an $_ discontinuity may propagate either upstream or downstream depending
upon the sign of G(H, F,) in D_. In both cases the discontinuity carries a decrease in
upstream flow depth.

For both of the $, family of solutions, the associated jumps in v and £ are obtained
from (24a, b) as

o, 1% = [6,1% ~ £[(H—1)/H] (H(H+1)/2F3)} > 0, (3la)

te(H— 1) (H(H+ 1) 2+ (H—1)/H) (H(H + 1)/202) |7 055

. >0; 3 G<0
2K H(1+ (H(H +1)/2F2) L ’
vV (2F5) H(1 £ (H( )/2F%)) <0:5., G>0,

[gi]ﬁ = g-L ~

(315)
and the relative upstream and downstream Froude numbers are
_ . <1,8,, - ! >1, 8,
¥y~ (H+1)/2H?) {> s Fyp~ (HH+1)/2) <1,

We see from (31b) that discontinuous solutions in the $, families carry only a small
step in bedform of O(¢). An illustration of a typical §, solution is shown in figure 5(a),
while illustrations of $§_ solutions are shown in figure 5b, ¢ for §_ S 0 respectively.
This completes the details of the two families of discontinuous solutions with
speeds §_. Both families exist in complementary regions of the (H,F,) plane, namely
D, and D_. Both have speeds of O(1) but carry only an O(¢) step in bedform. These
two families do not have the characteristics of the slow moving sediment bore which
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(a) e 4()=0(1)

(B)  5(1)=0(1) -

(iid) (iv)

(d)

7 (ix) (viii)

THE ROYAL A
A
>

SOCIETY

Figure 5. (@) The simple wave solution with § = §,. At (i):h=H > 1,V =V, > 1, £, = O(e). At (ii):
V=h=1, £=0. (b) The simple wave solution with § =8 < 0. At (ili);: A=H<1, V=V >1
£ = Ofe). At (iv): V=h=1, £=0. (¢c) The simple wave solution with § =3_>0. At (v): &
H<1,V=V,>1, § =0(). At (vi): V="~ =1, £{=0. (d) The domain of existance of the §

waves in the (H,F,) plane. At (vii): D_, 0 <$é_ <1, § > 0. At (viii): D,, §, > 1, §, > 0. At (ix):

o

D_, 6.<0,§,<0.

PHILOSOPHICAL
TRANSACTIONS
OF
H

carries an O(1) step in bedform. In fact the D, families are primarily river waves,
reducing, in the limit e— 0, to the usual turbulent bores of fixed-bed hydraulics. The
domains in which these solutions exist, D, are illustrated on the (H,F,) plane in
figure 5d.

We next consider the solution corresponding to the remaining root of equation

(25).
8.2. The O(e) root

The remaining root of equation (25) is of O(¢) as ¢ —0. Thus we put
§ = ew, (32)
with o of O(1). After writing (25) in terms of w, we obtain at leading order,
2F:—HH+1)} o+ H+1)2/H+0(e) = 0, (33)

which has the single root w = (H+1)?/HG(H, F,). Therefore, in this case, we have a
single family of solutions which propagate with the slow speed, from above,

A

A

=
P Ce 2 (1 :
e §=38, ~elH+1)*/HGH, F,). (34)
et E We now consider the domain of existence of this family of solutions in the positive
O quadrant of the (/{, F,)) plane. First, we observe from (34) that $, changes sign across
anf@) the curve G(H,F,) = 0, with §, > 0 in R, and §, < 0 in R,_, where,
Tmm Ry, ={(H,F,): H>0,0<F < 3vHH+1))}, (35a)
5% Ry ={HF,):H>0,F,> 3v(HH+1))} (35b)
E; Also, with § of O(e), equation (24 a, b) reduces to,

Ou -
gg o vy ~ by~ 1JH, £~ e(1—H?)/s, I (364, b)
=Z Phil. Trans. R. Soc. Lond. A (1991)
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(a)

) (i) \\\

Figure 6. (a) The region R, , in the (H,F,) plane. At (i): §, <0, £, <0. At (ii i):8,>0,&, > 0. (b) The
simple wave solution with § =4, >0. At (iii): V=V, >1, A=H <1, gL = 0(1) At (iv): V=
h=1,§=0.(c)The§implewavesolutionwiths—sb<0 At( ) V=V, >1k=H<1 £, =0(1).

At (vi): V=h=1,§{=

Finally we must consider energy dissipation at the discontinuity. With § of O(e)
and £, of O(1), equation (16) reduces to, at leading order,

AD/dt ~ (1—H)/2H(1 +H)) (1+6H + H?), (37)

where v, and g'L have been replaced using (36«, b). An examination of (37) shows
that energy is dissipated by this family of solutions ((dD/d¢) > 0) if and only if,
0 < H < 1. Therefore these simple waves exist only in the domain D, of the positive
quadrant of the (H,F,) plane, where,

D, ={HF,): 0<H<1,F >0} (38)

The associated jumps in » and £ are calculated from (364, b) as
1
[k = [Tk ~ = 1> 0, (394)

(6 = &L ~ (1—H) G(H,F,)/(H+1) H). (39b)

To summarize, we observe that this family of simple waves exists in D,. In
D, n R, the wave propagates slowly downstream with a speed of O(¢), accompanied
by an O(1) downstream facing step in bedform, and a decrease in upstream flow
depth. In the complementary region D, N R,_ the simple wave propagates slowly
upstream with a speed of O(¢), accompanied by an O(1) upstream facing step in
bedform and a decrease in upstream flow depth. Also, it should be noted that the
fluid flow, at leading order, encounters the slow moving step in bedforms as if it were
stationary. This is borne out in (39a) which simply expresses conservation of fluid
mass for steady flow over a fixed step.

Finally, we calculate the Froude numbers relative to the discontinuity both ahead

and behind as Fp=F, F,=F,/H, (39¢)

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 7. The region of non-uniformity of the _, §, waves in the (f/,F,) plane.

>To

respectively. Since this family of solutions requires H < 1, we observe that,
> Fy. (40)

The domain of existence of the family of solutions is shown in figure 6a, while
illustrations of typical solutions from this family are shown in figure 60, c.

This family of solutions, which has no analogue in fixed-bed hydraulics, exhibits
the required properties to describe the observed, slow moving, sediment bores.
However, further discussion and comparison is postponed until the remaining details
of the full set of solutions have been completed.

9. Non-uniform behaviour in the approximations for ¢ <€ 1

In the previous section we have developed a theory for simple wave solutions
through solving the cubic equation (25) for ¢ € 1 with H, F, > 0. The solution has two
roots of O(1), §,, and a single root of O(e), §,. As in the case of the linearized theory
(Needham 1990) the approximations associated with the §_ and §, roots become
non-uniform over a localized region of the (f/, F,) plane. This is evident from the
singular behaviour in the leading-order approximation for §,, (34), along the curve
G, F,) =0 in H < 1. The non-uniformity in $_ also occurs along G(H,F,) =0 in
H < 1, and is reflected through the singular behaviour in the associated £, , (315). The
approximation to the root s, remains regular throughout the whole of its domain of
definition, H > 1.

We now examine the behaviour of §, and $_ in the neighbourhood of G(H, F,) = 0;
that is, when F, ~ /(3H(H +1)) with 0 < H < 1. A consideration of equation (25)
reveals that the region of non-uniform behaviour is F, = v/ (AH(H 4 1)) + O(e?) with
0 < H < lase—0, which is in accord with the linearized theory of Needham (1990). A
sketch of the region of non-uniform behaviour is shown on the (H, ) plane in figure
7. Within this region, (26) and (34) indicate that § is of O(e#). To formalize the region
we introduce the variable /', where,

F,o=CGHH+ )+l 0<H<I, (41)

[0}

Phal. Trans. R. Soc. Lond. A (1991)
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Nonlinear theory for sediment bores 41
with F_ of O(1), and write,

with U of O(1).
We use (41) and (42) to replace § and ¥, in equation (25). At leading order (25)
reduces to a quadratic equation in U, the two roots of which lead to the wave speeds,

§=el, (42)

: , 2F 1 2F2 2(H4+1)
$ = ~egl—m % 4 0 4
=8~ il o ) )
as € > 0 in the region defined by (41). We note that S, are real throughout this region,
with §,>0, S <0 Vo<H<I1, |F|<w. (44)

Moreover, as we move out of region (41), with H fixed, we observe from (43), that

. S_; F -+ 00,
Sp—>1. =’
3y; F,——o00,
. Sps 17’O++oo,
S {s P, (45)
Thus S, continues §, in F, < /(GH(H+1)) into 5_ in F, > /GHH + 1)), whilst S_
continues §_ in F, < v/ GH(H+1)) into &, in F, >/ GHH +1)).

To complete the details we obtain the jumps in £ and v associated with S 4 from

(24a,b) as (0] = [6%]% ~ %_1 >0, (46a)
Ty S 1 22 2H+1)\| [>0:8,,
(515 = &, ~ (1= H*)/H {2\/(H(H+1))i2A/(H(H+1)+ H )} {< 0;5_.
(461)

An examination of (43) and (46 a, b) shows that both of the S + waves are slow moving,
with speeds of O(e?) and carry with them an O(e?) step in bedform. The S, wave moves
downstream with a step-down in bedform and the step in flow depth is in antiphase
to the bedform step. The S_ wave propagates upstream, carrying a step-up in
bedform, with the step in flow depth now in phase with the bedform step.

The continuation properties (45) of the Si families of solutions in region (41) can
now be used to develop a more concise notation for the complete family of solutions
which exist in the region 0 < H < 1 of the (H, F,) plane.

10. A concise notation

The continuation properties (45) of the Si families of solutions in region (41)
enable a more concise notation to be developed to describe the families of solutions
obtained throughout the (H,F,) plane. The complete set of families of solutions
obtained in the previous sections can be grouped into three families which we shall
denote by C,, C, and C; waves, which are defined below.

10.1. C,; waves

This family of solutions includes those in H > 1 with speed §,. Thus C; waves are
defined in H > 1 and have positive wave speeds

ey~ 8 H> 1. (47)
Phil. Trans. R. Soc. Lond. A (1991)
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(i) N
10(5)

Figure 8. The wave speeds ¢, ¢,, ¢, as functions of F, with H < 1 fixed;
(i) e(H+1)/H?, (ii) v/§(H(H +1)).

The jumps in %, v, £ for this family of solutions are then,

[hlg = (H—1) >0, (48a)
[v]k = [9]% = [v.]g > O, (48b)
(€)% = [E:)% > 0. (48¢)

For a given H > 1, the wave speed ¢, is a monotone decreasing function of ¥, and
a sketch is given in figure 8 on the (c,, ;) plane.

10.2. C, waves

This family of solutions is defined throughout the region 0 < H < 1 and represents
the composite of the $_, S, and §, families. Its wave speed ¢, is continuous and
positive throughout the whole of 0 < /{ < 1 and is given by (from (26), (34), (41),
(43), (45)),

8y 0 < F, < y(H)—O(e
¢ ~{S’+; X(H)—O0(e}) < F, < y(H)+0(e"), (49)
8.3 F, > x(H)+O(e})

where y(I) = +/(3H(H{ +1)) and F is defined in (41). With a given I < 1, a sketch
of the wave speed ¢, in the (c,, F',) plane is shown in figure 8. The associated jumps
from the C, wave are given by

[Alk = (H—1) <0, (500)

[l > 0; 0 <F, < x(H)+O(e),

L — /L ~
s = [¢= {[v,]ﬁ >0; F,> x(H)+0(e), (500)

Phil. Trans. R. Soc. Lond. A (1991)
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F,

(156

3

0150y

—_—f—

H

0

Figure 9. The domains of existence of the c,, ¢,, Cg Waves in the (H, F,) plane, with the transitional
behaviour in ¢, and ¢, occurring across F, = 1/ (H(H+1)).

[E)5 > 05 0 < F, < x(H)—0(e),
[£]5 ~{ €1 > 05 x(H)=O(e}) < F, < y(H)+0(e}), (50¢)
[E15>0: Fo> x(H)+0(e).
Thus the C, wave has speed ¢, > 0 throughout 0 < H < 1, with £, > 0 and the step
in bedform is in antiphase with the step in flow depth.
10.3. C, waves

This family of solutions is defined throughout the region 0 < H < 1 and represents
the composite of the s_, S_ and §, families. The wave speed ¢, is continuous and
negative throughout the region 0 < H < 1 and is given by (from (26), (34), (43), (45)),

§; 0 < F, < y(H)—O0(e),
e~ {S_; x(H)—O(e) < F, < x(H)+O(cb), (51)
Sp; F,> y(H)+0(e¥).

For a given H < 1, a sketch of ¢; as a function of F is shown in figure 8. The
corresponding jumps for the C, wave are given by,

(Al = (H—1) <0, (52a)
L [[v-1R >0 0 < F, < yH)—O(e}),
Wl = [¥l& {[vb]ﬁ >0; y(H)—0(e) < F, </ &H/H—-1)) (520)
ek <o 0 < Fy < x(H)=0(e),
(€15 = €L~ {[E 1k <05 x(H)—O(e}) < F, < x(H)+O(éh), (52¢)
[En]} < O; F, > y(H)+0(e).

Hence, the C, wave has speed ¢, < 0 throughout its domain of definition 0 <
H < 1, with £, < 0, and the step in bedform in phase with the step in flow depth.

In the limit as H — 1, the three families of solutions C; (¢ = 1,2, 3) reduce to those
described in the linearized theory of Needham (1990). A sketch of the domains of
definition of the C; (¢ = 1,2, 3) families of solutions is shown in figure 9.

We next consider the generation of C,; (i = 1,2,3) simple waves by a prescribed
upstream change in the sediment discharge rate.
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11. The generation of simple waves

Here we consider the possibility of a specified change in the upstream sediment
discharge rate leading to the development of propagating, discontinuous, simple
waves of the type belonging to the families C,(i = 1,2,3). Since the change in
sediment discharge rate is specified upstream, any waves which subsequently
develop must propagate downstream (out going waves). Thus the only type of
discontinuous simple waves which may be generated are (via (47), (49), (51)) those
in the C, and C, families. Moreover, we note from (486) and (500) that simple waves
in both of these families have [v]5 > 0, which, through (13d), leads to [¢]% > 0. This
condition implies that discontinuous simple waves of the type C, and C, can only
develop following an upstream increase in the sediment discharge rate. It is expected
that a decrease in the upstream sediment discharge rate will not lead to a steepening
bedform, but a bedform which will propagate with a shallow gradient in the form of
a continuous expansion wave.

In this paper we are concerned with the formation and propagation of sediment
bores. As noted in the introduction, the formation of a sediment bore generally
follows an increase in the upstream sediment discharge rate, which is in line with the
above discussion on the development and propagation of C, and C,; waves. The
characteristic features of the sediment bore are its slow speed of propagation (relative
to the flow speed) and its significant step in bedform (comparable in height with the
local flow depth). These properties are not apparent in the C, wave, which propagates
with a speed (47), which is comparable with the flow speed, and carries only a small
step in bedform, with a height, (48¢), much less than that of the local flow depth.
However, from (49) and (50¢), we see that the C, wave has a slow speed of
propagation and carries an O(1) step in bedform in the region,

0<F,<yH)—O0()p, 0<H<I, (53)

but suffers a transition across the boundary F, = y(H). Thus the C, wave, restricted
to region (53), exhibits the major features of a sediment bore. We therefore identify
the C, wave in region (53) with a sediment bore and limit further attention to this
case.

It is worth noting at this stage that the differential forms of the integral
conservation laws (13a-d) represent a third order hyperbolic system, and the
particular solutions considered in the present paper represent simple waves generated
by discontinuities forming on each of the three distinct characteristic families
associated with the system. Moreover, following the linearized theory of Needham
(1990), the system can be shown to be of wave hierarchy type, with three dynamic
waves (from which the C,, C,, C, waves of the present paper are special discontinuous
solutions), and two kinematic waves. One kinematic wave has an O(1) speed and
carries only an O(e) step in bedform, limiting to the usual flood wave of fixed bed
hydraulics as e¢—~>0. The other does not propagate and is purely diffusive,
corresponding to erosion of stationary bedforms. Neither of the two kinematic waves
can be associated with propagating bedforms.

As seen in the present paper, propagating bedforms are associated with the C,, C,
type dynamic waves. A further interesting interpretation can be made when
conditions are such that F, ~ /GH(H+1)), H <1, and the C,, C, waves are in
transition from bedform to river waves and vice versa, as discussed in §9. Under
these conditions the interaction between surface and bedform wave is strongest, with
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C,, C, being fully coupled surface and bedform waves. In addition, using (41) and
(46), we have F';, > 1 and F; < 1 for both of these waves in this region. This stronger
interaction between the bedform and surface wave, and the subcritical-supercritical
transition over the wave front are characteristic of anti-dune propagation and we
tentatively speculate that this interaction when #, ~ 4/ (H(H +1)) in H < 1 may be
related to anti-dune formation.

12. Discussion of the sediment bore solutions

We have identified sediment bores with the C, family of discontinuous simple
waves, when restricted to the domain in the (H, ;) plane described by (53). A further
physical requirement for the observation of a sediment bore in this region of the
(H, F,) parameter space is that the sediment bore be temporally stable. A criterion for
stability may be obtained from the linearized theory of Needham (1990). In that
paper, with ¢ € 1, it is shown that the leading order stability requirement for a
uniform alluvial flow with Froude number, F, is

F<2. (54)

The simple wave solution representing a sediment bore is constructed from two

uniform alluvial flows with differing Froude numbers F; and Fy, upstream and

downstream of the discontinuity respectively. Therefore, on using condition (54), we
deduce that a sediment bore solution will be temporally stable provided

max {#';, Fg} < 2. (55)
After use of (39¢) condition (55) reduces to
F, < 2H:, (56)

This stability requirement restricts further the domain (53). Stable sediment bore
solutions now exist only in the domain,

0<F,<2H:, O0<HSK 0.42153,}
0<F,<yH), 042153 <H <1,

where H = 0.42153 is the point of intersection of the functions y(H) and 2H:,

In deriving the family of sediment bore solutions, we have used H and F, as
parameters. In practice, it is the upstream sediment discharge rate, ¢;, which is
specified, rather than the flow depth, H. On examining the features of the family of
sediment bore solutions it is therefore more appropriate to work in the (g, #,) plane.
The parameters H and g;, are related, via (13d) and (39a), by

q, = 1/H®. (58)
On using (58) to transform (57) into the (g, #,) plane, we obtain,

(57)

n2\2 .
1 <qp < (4/F?)3, 0<F,< 0.547‘36,} (59)

1 <q,<4/(V(1+8F2)—1)2, 054736 < F, < 1,

as the domain in which stable sediment bore solutions exist. A sketch of this domain
on the (qy,,F,) plane is shown in figure 10. An examination of figure 10 shows that
sediment bores will only develop for ¢;, > 1, that is an increase in the upstream
sediment discharge rate, and also require the uniform flow ahead to be subcritical, i.e.
F, < 1. Moreover, for each Iy < 1, there is a cut-off value for ¢;, above which sediment
bores will not occur. This cut-off value increases unboundedly as F,—0, but
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9.

5.62736
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1
0 0.54736 1 F,

Figure 10. The domain of existence of sediment bores in the (F,q) plane.

g 1 2 3 4
1 2 9 3 4 q,

Figure 11. The sediment bore characteristics when F, = 0.2, 0.4 with ¢ = 0.02 and
1 < g, <4 (a) ¢, against g, (b) §; against g,

decreases to unity as F,— 1. The cut-off values of ¢, are provided by the upper limits
in (59). In terms of ¢;, and ¥, the properties of the family of sediment bore solutions
become, from (49) and (50),

Cy ~ e(L+¢3)%/qt glqn. Fo), H~1/gh, vy, ~gh, (60a—c)
£~ (gt — D glg, Fy)/ (g8 +1), (60d)

where g(qy, F,) = qi' {1 +¢3} —2F3.

An examination of (60a—d) reveals the qualitative behaviour of the properties
associated with the sediment bore as ¢y, is varied for fixed F,. With g, close to its
lower limit of unity, £, -0 and ¢, > 2¢/(1—F?2), the linearized wave speed given in
Needham (1990). As ¢, increases, & achieves a local maximum, after which it
decreases, before finally becoming small, of O(e?), as ¢y, approaches its upper cut-off
limit. The behaviour of ¢, is monotone increasing with ¢;, becoming of O(e?) as the
upper limit for ¢;, is reached.

To obtain a quantitative picture, we consider two cases in detail. In both cases
e = 0.02, whilst case one has F/, = 0.2 and case two has F; = 0.4. Sediment bores exist
for 1 < ¢q;, < q¥ where ¢f = 21.5443 and 8.5499 in cases one and two respectively.
However, in most practical situations, the upstream increases in sediment discharge
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will not exceed a four-fold increase, and in both cases we restrict 1 < q;, < 4. In figure
11a the sediment bore propagation speed, ¢,, is plotted against 1 < ¢;, < 4 for both
cases. These show that ¢, increases with ¢,, whilst there is an overall increase in ¢,
from the case F, = 0.2 to the case ¥, = 0.4 in line with (60a) which is a montone
increasing function of #, at fixed ¢;. In figure 115 the step in bedform, £, , is plotted
against 1 < g, < 4 for both cases. In the case of F, = 0.2, £, is a monotone increasing
function on 0 < ¢, < 4, with its maximum achieved at a value of ¢;, > 4. However,
for the case F, = 0.4, the maximum value of £, is approached at the end of the range
0 < ¢;, < 4, and we observe the beginning of the decrease in £, which must become

of O(e?) as ¢r,~> qt and the transition region is approached. We also note the overall
decrease in &; from the case # = 0.2 to F = 0.4. This can be deduced from (60d),
which is a montone decreasing function of F, at fixed ¢;.

13. The generation of a sediment bore in the flume

As mentioned in the introduction, the generation of a sediment bore in a flume is
quite straightforward, requiring the maintainence of a one- or two-fold increase in
the sediment supply of an otherwise uniform alluvial flow. We have done a simple
experiment of this type in the flume at UEA, which is described below. Measurements
were made throughout the experiment and are compared with theoretical predictions
at the end of this section.

At the beginning of the experiment the dry flume was prepared with a 3 cm level
bed of 2 mm grit. A uniform alluvial flow was then generated by introducing a water
discharge per unit width at the head of the flume of 0.036 m? s~'. This discharge rate
was calculated using the flow meter on the return pipe of the flume. At equilibrium
the uniform flow was found to carry a volumetric bed-load sediment transport rate
per unit width of 3.666 x 107¢ m? s7* (all the sediment was transported as bedload).
This was measured by collecting sediment discharged at the end of the flume. This
transport rate was maintained by supplying sediment uniformly across the flume at
the required rate, by means of a hopper situated at the head of the flume.

To make measurements, two of the flume side windows (the first situated about
1.5 m downstream from the head of the flume) were marked with a coordinate grid of
dimensions 10 em X 3 ecm. A photograph of the uniform flow through the first of these
windows is shown in figure 12.

To generate the sediment bore, a sudden and sustained increase was made to the
sediment supply from the hopper at the head of the flume, at reference time, ¢ =
0 min. The immediate response to this was a large buildup of sediment at the head of
the flume with a corresponding rapid contraction in flow depth in the vicinity of the
sediment buildup. Over the first 10 min the flow began to erode this local buildup of
sediment by initiating the formation of a sediment bore. In its transient stages, the
step height of the sediment bore and its speed of propagation varied quite
considerably. Also, small disturbances which appeared behind the bore where
observed to rapidly catch up with it, whilst small disturbances ahead were caught up
by the bore. This observation is in line with the theory, in which the sediment bore
is obtained as a discontinuous simple wave solution of the system of conservation
laws (1)—(4) which, in differential form are of hyperbolic type. Thus the characteristic
slope associated with the state behind the discontinuity must be larger than that
corresponding to the state ahead of the discontinuity. Small disturbances both ahead
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Figure 12. The uniform alluvial flow viewed through window 1.

and behind propagate along these characteristic slopes and are therefore enveloped
by the discontinuity, in line with the above observation. Photographs of the
developing sediment bore where taken at times ¢t = 11, 13, 15, 17 min during this
transient stage, when the wave front was propagating through the first of the two
observation windows. These are shown in figure 13a-d. The mean propagation speed
of the sediment bore at this stage is estimated at approximately 1.5x 103 ms™. A
further feature to note is the small disturbance which forms behind the wave front
in the photograph at time { = 15 min. At the later time ¢ = 17 min this has developed
and is rapidly advancing upon the primary bore wave front, as predicted by the
theory. The propagation speed of this wavelet is estimated at 2.9 x 107 m 7.

After a further 13 min, at ¢ = 30 min, the sediment bore had reached its quasi-
steady equilibrium form, maintaining a constant step height in bedform and
propagating with a constant speed. At this stage the bore wave front had reached the
second observation window. Photographs are shown in figure 14a-d at times ¢ = 30,
40, 50, 60 min. The bore has reached its constant equilibrium propagation speed
which is estimated from figure 14a—d as 1.67 x 107 m s™*. A point worth comment
is that the wave front in figure 14a—d does not appear as a discontinuity, but has a
linear slope over a horizontal length scale comparable to the mean flow depth. This
is not in conflict with the theory, since the shallow water theory is based on a
horizontal length scale derived from the mean flow depth and the very small overall
slope of the river low. When measured relative to this shallow water length scale, the
slope at the wave front is very large, approaching a discontinuity in the shallow
water limit adopted in the theory.

The photographs in figure 14a—d enable us to determine the depth both upstream
and downstream of the sediment bore as 0.09 m and 0.15 m respectively. Since the
wave front of the bore is moving extremely slowly relative to the water flow speed,
we are then able to use the known water discharge of 0.036 m? s7! to estimate the
depth averaged water velocity as 0.4 m s7! and 0.24 m s™! upstream and downstream
of the wave front respectively. With these measurements we obtain the upstream
and downstream Froude numbers as 0.426 and 0.198 respectively. To determine the
increased rate of sediment transport behind the step we first calculate the volume of
sediment stored in the bed-step by the advancing wave front from the photographs
att = 30 and ¢ = 50 min, from which we subtract the volume of sediment transported
away from the step at the known downstream transport rate, over the same time
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Figure 13. The transient stage in the formation of the sediment bore viewed through window 1 at
times ¢{ = (a) 11 min, (b) 13 min, (¢) 15 min, (d) 17 min.
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Figure 14. The quasi-steady sediment bore viewed through window 2 at times ¢ = (a) 30 min,
(b) 40 min, (c) 50 min, (d) 60 min. The photographs were produced in the flume at UEA.
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interval. This leads to a value of 1.0x107° m®s™! for the increased upstream
sediment discharge rate per unit width. ‘

We can now compute the parameters ¢, ¥, ¢;, required by the theory. From above,
the downstream Froude number is F; = 0.198. The parameter ¢;, is the ratio of the
upstream to downstream bed-load sediment transport rates, thus we have ¢;, = 2.78.
Finally e is the ratio of the downstream sediment discharge rate to the water
discharge rate, which gives ¢ = 107%. These parameter values are used to obtain the
theoretical predictions for the bedform step height and the propagation speed of the
sediment bore. After substitution into equations (60a, d) we obtain,

&in = 0.368, Co,n = 4.84 % 1074 (61)

as theoretical predictions (to three significant figures). The experimental values for
these quantities are obtained, via the photographs in figures 14a—d, as

gexp = 0.4, Coexp = 5.56 x 107, (62)

A comparison of (61) and (62) shows at least an order of magnitude agreement in both
quantities. In fact the percentage error in the bedstep height is 8 %, while that in the
bore propagation speed is 12.9%. This level of agreement is very encouraging,
particularly since it has been obtained through a relatively unsophisticated level of
experimentation. A point worth noting is that the only empiricism in the theory is
introduced through the sediment transport function, which is taken to have the form
g = mv?; thus we would expect the quantitative accuracy of the theory to depend
upon the applicability of this transport function. We can examine how accurate this
transport function is for the present case by using the above data. On using the
measured values of ¢ and v ahead of the wave we obtain an estimate for m as m =
6.37 x 1075 s. With this value for m, the sediment transport rate behind the wave
would then be predicted as 1.019x 107> m?®s™!, whereas the measured value was
recorded as 1.0 x 107® m? s71. Therefore the sediment transport function used in the
theory is in error by 1.87% in predicting the upstream transport rate, when
calibrated on the downstream conditions. This remarkable level of accuracy of the
quadratic sediment transport function is in line with the levels of agreement between
(61) and (62).

Finally, we comment on the form of the free surface of the water. From the
photographs in figure 14 a—d we see that the deflection in the free surface of the water
as it flows over the step in bedform is negligible, of the order of 5 mm at the end of
the observation window. The theory predicts a change in the free surface level, via
(60d, b), as 4.8 mm. This is in agreement with the above observation up to 4 %. Also,
since the flow downstream of the step in bedform is subecritical, it is interesting to
consider why steady gravity waves are not observed on the surface of the water in
figure 14a—d downstream of the step. To address this point, we first note that since
the propagation speed of the step in bedform is slow compared with the mean flow
velocity of the water; as a first approximation we may consider the step as being
stationary. We can then draw some conclusions using the theory of King & Bloor
(1987) who address the problem of steady free surface flow over a rigid, fixed step in
the bed. This theory predicts the presence of a downstream gravity wave train, when
the flow is subcritical. However, for the parameters in the present experiment, the
wave length of these gravity waves is predicted as ca. 567 cm, with an amplitude of
ca. 4.6 cm. This leads to a free surface slope of ca. 8 x 1072, Thus the waves are not
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detectable over the length of the observation window which is in line with the
photographs in figure 14a—d.

A further point to note is the structure of the sediment bore wave front as shown
in figure 14a—d. As discussed above, the change in free surface level over the wave
front is negligible while the change in bedform level over the wave front is linear. This
is in line with our proposed form for the function d’(y) in (18a).

The experiment which has been described in this section has readily reproduced
the qualitative features predicted by the theory. However, it has also shown that the
quantitative predictions of the theory are in line with observations, which is
encouraging for the theory.

14. Conclusions

We have considered the integral conservation laws governing one-dimensional
hydraulic flows in alluvial rivers or channels. In particular we have examined those
simple wave solutions which have a step discontinuity in bedform and free surface,
separating two differing, upstream and downstream, uniform alluvial flows. This
type of solution may be generated by a change in the order of magnitude of the
upstream sediment discharge rate, ¢;, in an otherwise uniform alluvial flow. We have
shown that there are three families of solutions of this type, each family parametrized
by the upstream sediment discharge rate ¢;, and the downstream Froude number, F..
In a restricted region of the (¥, q;) plane, one of these families of solutions has the
appropriate form to represent a stable sediment bore. The detailed properties of this
family of solutions have been obtained, for example the step in bedform height, the
propagation speed, and the step in free surface level, as functions of ¢;, and F,.

In particular it has been shown that the downstream propagation of a stable
sediment bore requires:

(1) an increase in the upstream rate of sediment discharge, i.e. ¢;, > 1;

(2) the downstream flow must be subcritical, i.e. F, < 1;

(3) the increase in sediment discharge should not exceed a critical value, i.e.

£ 7
91 < ¢i(F,), Where=l< . { (4/F2); 0 < F, < 0.54736,
ar, (Fo) = 4/(v/(1+8F%)—1)%; 0.54736 < F, < 1.
When the above conditions are satisfied, the increased upstream sediment load is
transported slowly downstream as a sediment bore, with speed of O(e) and O(1)
deposition rate. However, when F, and ¢;, violate conditions (1) or (3), that is for
F,>1orq > q¥(F,) with F, < 1, then the C, family of waves acquires an O(1) speed
but supports only an O(e) step in bedform. Thus the increase in sediment load in this
case is transported much faster, but with a much lower deposition rate, and a
sediment bore is not formed. The sediment bore is ‘washed-out’ if ¥, or ¢y, is too
large. A decrease in the upstream sediment discharge rate (¢;, < 1) cannot lead to the
formation of a discontinuous step in bedform, as all of the C; ( = 1, 2, 3) waves require
qr, > 1. It is expected that a decrease in upstream sediment discharge rate will lead
to a shallow gradient expansion wave front.
Finally, a simple experiment has been performed under which conditions (1)—(3)
were satisfied. Both qualitative and quantitative comparisons were made with the
theory and the agreement was encouraging.

The authors are grateful to a referee for making a most valuable criticism of an earlier version of
the paper.
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igure 12. The uniform alluvial flow viewed through window 1.
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igure 13. The transient stage in the formation of the sediment bore viewed through window 1 at
times { = (a) 11 min, (b) 13 min, (¢) 15 min, (d) 17 min.
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igure 14. The quasi-steady sediment bore viewed through window 2 at times t = (a) 30 min.
(b) 40 min, (¢) 50 min, (d) 60 min. The photographs were produced in the flume at UEA.
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